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Abstract

Flexural gravity wave scattering by multiple articulated floating elastic plates is investigated in the three cases for

water of finite depth, infinite depth and shallow water approximation under the assumptions of two-dimensional

linearized theory of water waves. The elastic plates are joined through connectors, which act as articulated joints. In the

case when two semi-infinite plates are connected through a single articulation, using the symmetric characteristic of the

plate geometry and the expansion formulae for wave-structure interaction problem, the velocity potentials are obtained

in closed forms in the case of finite and infinite water depths. On the other hand, in the case of shallow water

approximation, the continuity of energy and mass flux are used to obtain a system of equations for the determination of

the full velocity potentials for wave scattering by multiple articulations. Further, using the results for single articulation

and assuming that the articulated joints are wide apart, the wide-spacing approximation method is used to obtain the

reflection coefficient for wave scattering due to multiple articulated floating elastic plates. The effects of the stiffness of

the connectors, length of the elastic plates and water depth on the propagation of flexural gravity waves are investigated

by analysing the reflection coefficient.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

In the recent past, there has been significant progress in the hydroelastic analysis of very large floating structures

(VLFS) which are meant for ocean space utilization for various human activities. The unique characteristics of these

types of ocean structures are primarily related to their unprecedented length, displacement and associated hydroelastic

response, analysis and design. These large structures consist of many modules, which are fabricated in shipyards and

then articulated together on site. The articulation of the elastic plates is done by the connectors which depend on the

stiffness constants known as the vertical linear spring stiffness and flexural rotational spring stiffness. Xia et al. (2000)

analysed the hydroelastic behaviour of an articulated plate by modelling the connectors by singular line loading and its

derivatives in water of finite depth. To reduce the vibration of the floating structure, using two different physical
e front matter r 2009 Elsevier Ltd. All rights reserved.
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approaches Khabakhpasheva and Korobkin (2002) analysed the hydroelastic behaviour of the compound floating

plates under the influence of surface waves. In the first approach, an auxiliary spring-and-mass system was added to

reduce the vibration of the main structure. In this approach an elastic plate of smaller size compared to the original

floating elastic plate was connected to the original structure with torsional spring stiffness. However, in the second

approach, the floating structure was connected to the sea bottom with a spring. Chung and Fox (2005) described

various transition conditions at the joint of two semi-infinite floating elastic plates and obtained a solution by the

Wiener-Hopf technique to investigate the scattering of oblique flexural gravity wave propagation across a crack in a

floating ice-sheet in water of finite depth. Karmakar and Sahoo (2005) studied the wave scattering by a single

articulated floating elastic plate in water of infinite depth by a direct application of a mixed type Fourier transform and

orthogonal mode-coupling relation where all unknowns were obtained in terms of convergent integrals. Karmakar et al.

(2007) re-derived the expansion formulae of Manam et al. (2006) and analysed the effect of single articulation and

compression on the scattering of flexural gravity waves in infinite water depth. Fu et al. (2007) examined the

hydroelastic response of flexible floating interconnected structures based on the finite element method. In addition,

significant progress in the literature on hydroelasticity theories of VLFS are reviewed by Kashiwagi (2000), Watanabe

et al. (2004) and Chen et al. (2006). Suzuki et al. (2006) provided a detailed overview of the history, application and

uniqueness of VLFS including the design, construction, and the future scope of work.

A very significant amount of progress on wave-ice interaction has been made in the literature using the floating elastic

plate model, which finds application in the field of cold region science and technology, for the large sheets of ice that

cover a vast area of the ocean surface in the Arctic and Antarctic regions. Squire and Dixon (2001) developed a model

based on the application of Green’s function to allow interaction of normally incident ice-coupled waves with any

number of cracks. Williams and Squire (2004) studied the oblique wave scattering of plane flexural gravity waves due to

randomly shaped and spaced irregularities in sea-ice by the application of Green’s function and wide-spacing

approximation. Porter and Evans (2006) studied the scattering of flexural gravity waves by multiple narrow cracks in

ice-sheets by using canonical source function approach and wide-spacing approximation in which the ice-sheet was

modelled as a thin elastic plate. The wave reflection by a semi-infinite periodic array of cracks was formulated exactly in

terms of a convergent infinite system of equations. Williams and Squire (2006) developed a theoretical model to describe

the wave propagation through three floating elastic plates based on the methods of Wiener-Hopf technique and the

residue calculus technique with the edges being either fixed or free. Manam et al. (2006) derived the general expansion

formulae and related mode-coupling relations based on the Fourier analysis to tackle a general class of boundary value

problems and applied them to study the scattering of ice-coupled waves by a straight crack in infinite water depth.

Porter and Evans (2007) considered the diffraction of flexural gravity waves by multiple cracks of finite lengths in an

elastic sheet and used the Fourier transform to obtain a system of hypersingular integral equations, which were solved

by Galerkin’s method. Kohout et al. (2007) studied the linear wave propagation through multiple floating elastic plates

of variable properties based on the method of eigenfunction expansion and appropriate matching conditions. Vaughan

et al. (2007) analysed the scattering of ice-coupled waves by imperfections in an ice-sheet, examining the cracks and

pressure ridges, and obtained asymptotic solutions to physically analyse the zeroes present in the reflection coefficient.

Kohout (2008) in her Ph.D. thesis investigated the water wave scattering by floating elastic plates with applications to

sea-ice. Squire (2008) discussed the synergy between very large floating structures and sea-ice interaction with surface

gravity waves. Bennetts et al. (2009) analysed the scattering of flexural gravity waves with periodic structures and

observed that the variations in the periodic irregularities produce strong resonances about the ‘Bragg frequencies’ for

relatively few periods.

Most of these investigations on wave interaction with floating elastic plates/ice-sheets are based on small amplitude

wave theory in water of finite or infinite depths. On the other hand, a majority of the VLFS are constructed near the

shoreline, where the water depths are relatively shallow. Marchenko and Voliak (1997) analysed the scattering of

flexural gravity waves in shallow fluid beneath an ice cover with linear irregularities due to cracks and hummocks.

Sturova (2001) analysed the deflection of floating flexible platforms in shallow water after reducing the problem to a

system of boundary integral equations. Andrianov and Hermans (2003) discussed the influence of water depth on the

hydroelastic response of very large floating structures. Ohkusu and Namba (2004) studied the hydroelastic behaviour of

large floating structures using shallow water theory. Sturova (2006) analysed the steady-state behaviour of a floating

elastic plate acted upon by a localized external load using linear shallow water theory.

In the present study, scattering of flexural gravity waves by multiple articulated floating elastic plates is investigated

and compared in the three cases of finite water depth, infinite water depth, and shallow water approximation. Multiple

plates are assumed to be connected by articulation through vertical linear springs and flexural rotational springs. The

two end plates are assumed to be infinitely extended, thus covering the entire water surface. Applying the generalized

expansion formulae for wave-structure interaction problems as developed in Manam et al. (2006) and utilizing the

continuity and edge conditions, explicit solutions in the case of a single articulation are obtained for both finite and
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infinite water depths. The results of a single articulation are then used to obtain the results for multiple articulations

using the wide-spacing approximation method. The derivations of the velocity potentials for multiple articulations in

both the cases of finite and infinite water depths are discussed in brief to give an idea about the complexity of the

problem in the direct method compared to that of the wide-spacing approximation method. However, in the case of

shallow water approximation, the results for multiple articulations are also computed directly by using the continuity

of energy and mass flux at the articulated edges. The numerical results and discussion are based on the analysis of

reflection coefficient, which provides a qualitative insight on the reflection of the flexural gravity waves due to multiple

articulations. The effects of change in water depth, plate length and the values of the stiffness constants are studied in

the case of plates having single, double and four articulations.
2. Wave scattering by articulated floating elastic plate

In this section, the general mathematical formulation and the solution procedures in specific cases associated with

wave scattering by multiple articulated floating elastic plates in water of finite depth, infinite depth and shallow water

approximation are described in detail.

2.1. The general boundary value problem

In the present study, a two-dimensional Cartesian coordinate system is chosen, with the x-axis being horizontal and

the y-axis being vertical positive downward, as shown in Fig. 1. The fluid is assumed to occupy the region �1oxo1,

0oyoh in the case of finite water depth and�1oxo1, 0oyo1 in the case of infinite water depth. It is assumed that

the undisturbed mean water surface y ¼ 0, �1oxo1, is covered by an elastic plate of thickness d, which is a

combination of multiple floating elastic plates joined through proper articulations. Without any loss of generality, a total

of N þ 1 plates with N articulations at x ¼ �aj , y ¼ 0, j ¼ 1; 2; . . . ;N, are considered as shown in Fig. 1. The whole

domain is divided into N þ 1 regions along the vertical interfaces at the articulated edges x ¼ �aj and are denoted by I j ,

where I j � ð�ajoxo� aj�1Þ for j ¼ 2; 3; . . . ;N and I1 � ð�a1oxo1Þ, INþ1 � ð�1oxo� aN Þ, with 0oyoh in the

case of finite water depth and 0oyo1 in the case of infinite water depth. It may be noted that all the plates are of finite

length, except the two plates at the two far ends, which are assumed to be of semi-infinite length as in Fig. 1.

It is assumed that a monochromatic flexural gravity wave is normally incident from the positive x direction on the

first articulation at x ¼ �a1 and propagates through the multiple articulated plates. It experiences partial reflection and

transmission at each and every articulated edge before being transmitted into the last semi-infinite plate region.

Assuming that the fluid is inviscid and incompressible, and the motion is irrotational and simple harmonic in time with

angular frequency o, the velocity potential Fjðx; y; tÞ is expressed in the form Fjðx; y; tÞ ¼ Reffjðx; yÞe
�iotg, where Re

denotes the real part and the subscript j refers to the respective regions. The spatial velocity potential fjðx; yÞ satisfies
the governing equation

r2fj ¼ 0 in the fluid domain. (1)

Considering the Euler–Bernoulli beam model for the elastic plates, the linearized plate boundary condition on the

mean free surface is given by [as in Karmakar and Sahoo (2005)]

fð1þD@4xÞ@y þ Kgfj ¼ 0 on y ¼ 0; x 2 I j ; j ¼ 1; . . . ;N þ 1, (2)
h
x

y

ELASTIC PLATE
INCIDENTWAVE

ARTICULATION

y=0

y=h

x = – aN x = – a1x = – a2x = – aN-1 x = 0

Fig. 1. Schematic diagram for multiple articulated floating elastic plates.
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where D ¼ EI=ðrwg�mso2Þ, K ¼ rwo
2=ðrwg�mso2Þ, EI ¼ Ed3=12ð1� n2Þ is the rigidity of the plate, E is Young’s

modulus, I ¼ d3=12ð1� n2Þ, n is the Poisson ratio, ms ¼ rpd, rp is the density of the elastic plates, rw is the density of

water and g is the acceleration due to gravity.

The no-flow condition at the bottom boundary yields

@yfj ¼ 0 on y ¼ h in the case of finite water depth, (3)

fj ;rfj ! 0 as y!1 in the case of infinite water depth.

In addition, continuity of velocity and pressure across the vertical interface at the articulated edges yield

@xfjðxþ; yÞ ¼ @xfðjþ1Þðx�; yÞ

fjðxþ; yÞ ¼ fðjþ1Þðx�; yÞ

)
at x ¼ �aj ; j ¼ 1; . . . ;N for all y. (4)

Assuming that the plates are connected by a vertical linear spring and a flexural rotational spring with stiffness k33

and k55, respectively, the shear force and the bending moment at the connecting edges ð�aj ; 0Þ, j ¼ 1; . . . ;N satisfy the

conditions [as in Xia et al. (2000) and Chung and Fox (2005)]

EI@3yx2fjðxþ; 0Þ ¼ k55f@
2
yxfjðxþ; 0Þ � @

2
yxfðjþ1Þðx�; 0Þg, (5a)

EI@3yx2fðjþ1Þðx�; 0Þ ¼ k55f@
2
yxfjðxþ; 0Þ � @

2
yxfðjþ1Þðx�; 0Þg, (5b)

EI@4yx3fjðxþ; 0Þ ¼ �k33f@yfjðxþ; 0Þ � @yfðjþ1Þðx�; 0Þg, (5c)

EI@4yx3fðjþ1Þðx�; 0Þ ¼ �k33f@yfjðxþ; 0Þ � @yfðjþ1Þðx�; 0Þg. (5d)

It may be noted that, if both the stiffness constants k33 and k55 are absent, then the articulated condition as in

Eqs. (5a)–(5d) behaves as free-edge condition. Further, it may be noted that Khabakhpasheva and Korobkin (2002)

used similar edge conditions as in (5a) and (5b) in the compound floating structure for attenuating plate vibration. The

far field radiation conditions are given by

f1ðx; yÞ�ðe
�ik0x þ RN eik0xÞf 0ðyÞ as x!1; fNþ1ðx; yÞ�TN e�ik0xf 0ðyÞ as x!�1, (6)

where f 0ðyÞ ¼ cosh k0ðh� yÞ= cosh k0h in the case of finite water depth, and f 0ðyÞ ¼ e�k0y in the case of infinite water

depth where k0 is the wave number of the incident wave satisfying the flexural gravity wave dispersion relation

K ¼ ðDk4
0 þ 1Þk0 tanh k0h in the case of finite water depth,

K ¼ ðDk4
0 þ 1Þk0 in the case of infinite water depth. (7)

The unknown constants RN and TN are associated with the amplitude of the reflected and transmitted waves,

respectively, in the case of N articulations.

2.2. Wave scattering by single articulated floating elastic plate

In this subsection, we will describe in brief the method of solution for the cases of finite and infinite water depth and

shallow water approximation for the flexural gravity wave scattering by a single articulated floating elastic plate.

2.2.1. Finite water depth

The geometry of the present problem is a particular case of the one described in Fig. 1 with N ¼ 1. Thus, without any

loss of generality, we consider two floating semi-infinite plates which are joined through articulation at x ¼ 0. The

domain under consideration is divided into two sub-domains I j , j ¼ 1; 2, namely I1 for (0oxo1, 0oyoh) and I2 for

(�1oxo0, 0oyoh) as in Fig. 2. Keeping in mind the assumptions made in Section 2.1, the spatial velocity potential

fjðx; yÞ, j ¼ 1; 2, satisfies the governing equation (1) along with boundary conditions (2)–(5) as appropriate for the case

of finite water depth. Exploiting the geometrical symmetry of the physical problem about the line x ¼ 0, 0oyoh, the

boundary value problem defined in the infinite strip �1oxo1, 0oyoh, is reduced to two boundary value problems

in the semi-infinite strip 0oxo1, 0oyoh, by using the reduced potentials as defined by

jðx; yÞ ¼ f1ðx; yÞ � f2ð�x; yÞ and Uðx; yÞ ¼ f1ðx; yÞ þ f2ð�x; yÞ, (8)

where f1ðx; yÞ and f2ð�x; yÞ represent the velocity potentials in the intervals I1 and I2, respectively. The reduced

antisymmetric and symmetric potentials jðx; yÞ and Uðx; yÞ satisfy Eqs. (1)–(3) independently. However, the continuity
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Fig. 2. Schematic diagram for single articulated floating elastic plate.
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conditions in Eq. (4) yield

jðx; yÞ ¼ 0 and @xUðx; yÞ ¼ 0 at x ¼ 0; 0oyoh. (9)

Further, the edge conditions (5a)–(5d) in terms of jðx; yÞ and Uðx; yÞ are derived as usual.

Using the expansion formula for the wave-structure interaction problem and the corresponding orthogonal mode-

coupling relations as in Sahoo et al. (2001) [see also Manam et al. (2006) and Bhattacharjee et al. (2007)], the reduced

potentials jðx; yÞ and Uðx; yÞ are obtained as

jðx; yÞ ¼ e�ik0xf 0ðyÞ þ
XII

n¼0

An e
ienknxf nðyÞ þ

X1
n¼1

An e
�knxf nðyÞ, (10)

Uðx; yÞ ¼ e�ik0xf 0ðyÞ þ
XII

n¼0

Bn e
ienknxf nðyÞ þ

X1
n¼1

Bn e
�knxf nðyÞ, (11)

where f nðyÞ ¼ cosh knðh� yÞ= cosh knh for n ¼ 0; I ; II and kn, n ¼ 0; I ; II , satisfies the dispersion relation

K ¼ ðDk4
n þ 1Þkn tanh knh, (12)

with k0 being a real and positive root, the kn being purely imaginary and of the form kn ¼ ipn; pn40 for n ¼ 1; 2; . . . :
Apart from the real positive root and imaginary roots, the dispersion relation in Eq. (12) has four complex roots

kn; n ¼ I ; II ; III ; IV , of the form �a� ib where a, b being real. In the present study, we have considered two complex

roots with positive real parts for the sake of boundedness of the solution in the expansion of the reduced velocity

potentials as in Eqs. (10) and (11).

The unknown constants An and Bn are obtained as

An ¼ �Dbak3
n tanh knh=KCn � dn; ba ¼ jyð0þ; 0Þ ¼ 2ik4

0EI tanh k0h=OaD;

Oa ¼
1

K

P1
n¼0;I ;II ;1

k4
n

Cn

ð2k33 � iEIk3
n�nÞtanh

2knh;

9>>=
>>; (13)

Bn ¼ ienDk2
nas tanh knh=KCn þ dn; as ¼ Uyxð0þ; 0Þ ¼ �2EIk3

0 tanh k0h=DOs;

Os ¼
i

K

P1
n¼0;I ;II ;1

k4
n

Cn

ð2ik55 þ EIkn�nÞtanh
2knh;

9>>=
>>; (14)

where

Cn ¼
2knhð1þDk4

nÞ þ ð1þ 5Dk4
nÞ sinh 2knh

4knð1þDk4
nÞcosh

2knh
,

with

dn ¼
1 for n ¼ 0;

0 for n ¼ I ; II ; 1; 2; . . .

(
and en ¼

1 for n ¼ I ; 0; 1; 2; . . . ;

�1 for n ¼ II :

�
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Once the constants A0 and B0 are determined, the reflection and the transmission coefficients are derived from the

relations Kr ¼ jR1j ¼ jðB0 þ A0Þ=2j and Kt ¼ jT1j ¼ jðB0 � A0Þ=2j.
It should be noted that, for specific parameters, often the complex roots are replaced by purely imaginary roots in Eq.

(12) and there can be situations where the two roots coalesce and such situations do not correspond to any realistic

physical process [see Williams (2006) and Bennetts et al. (2007)]. In the context of the present paper, the author could

not come across any such situation and thus the above derivations are based on the assumption that the complex roots

of the dispersion relations are unique in nature as described above.

2.2.2. Infinite water depth

In the case of infinite water depth, the geometry of the physical problem is same as in the case of finite water depth

with h!1. The detailed derivation of the velocity potential in the case of a single articulation in infinite water depth is

given in Karmakar and Sahoo (2005). However, the expressions for the potentials are given here for the sake of clarity

and completeness, which will be used in the numerical computation for the multiple articulations. Hence, proceeding as

in Karmakar and Sahoo (2005), the reduced potentials jðx; yÞ and Uðx; yÞ (defined in a similar manner as in the case of

finite water depth) are expanded in terms of appropriate eigenfunctions as given by

jðx; yÞ ¼ e�ik0xf 0ðyÞ þ
XII

n¼0

An e
ienknxf nðyÞ þ

2

p

Z 1
0

Lðx; yÞAðxÞ e�xx dx
DðxÞ

, (15)

Uðx; yÞ ¼ e�ik0xf 0ðyÞ þ
XII

n¼0

Bne
ienknxf nðyÞ þ

2

p

Z 1
0

Lðx; yÞBðxÞ e�xx dx
DðxÞ

, (16)

where Lðx; yÞ ¼ xð1þDx4Þ cos xy� K sin xy, DðxÞ ¼ x2ð1þDx4Þ2 þ K2 and f nðyÞ ¼ e�kny for n ¼ 0; I ; II . In Eqs. (15)

and (16), the An and Bn are the unknown constants to be determined and knðn ¼ 0; I ; II ; III ; IV Þ are roots of the dispersion
relation K ¼ knðDk4

n þ 1Þ, with k0 being the real and positive root, kI and kII are complex conjugate with positive real

parts, kIII and kIV are complex conjugate with negative real parts. However, in the relation for jðx; yÞ and Uðx; yÞ, only two
complex roots with positive real parts are taken into account for the sake of boundedness of the solution.

Using the continuity conditions as in Eq. (4) and the edge conditions as in Eqs. (5a)–(5d) along with the orthogonal

mode-coupling relations as in Manam et al. (2006), the unknown constants An, Bn and the unknown functions AðxÞ,
BðxÞ are obtained as

An ¼ �Dbak3
n=KCn � dn; AðxÞ ¼ Dx3ba; ba ¼ 2ik4

0EI=OaD,

Oa ¼
�1

K

XII

n¼0

k4
n

Cn

fenEI ik3
n � 2k33g þ

2K

p

Z 1
0

x4ðEIx3 � 2k33Þ dx
DðxÞ

, (17)

Bn ¼ ienk2
nDas=KCn þ dn; BðxÞ ¼ �Dx2as; as ¼ �2EIk3

0=DOs,

Os ¼
i

K

XII

n¼0

k4
n

Cn

fenEIkn þ 2ik55g þ
2K

p

Z 1
0

x4ðEIxþ 2k55Þ dx
DðxÞ

, (18)

where Cn ¼ ð1þ 5Dk4
nÞ=2K. Once the coefficients A0 and B0 are found, the reflection and transmission coefficients are

determined from the relations as given in the case of finite water depth.

2.2.3. Shallow water approximation

Under the assumptions of the linearized shallow water theory, the velocity potentials fjðxÞ for j ¼ 1; 2 and the

deflection of the elastic plates ZjðxÞ for j ¼ 1; 2 are related as (Sturova, 2006; Ohkusu and Namba, 2004)

�ioZj ¼ h@2xfj . (19)

The linearized long wave equation in the plate-covered region for j ¼ 1; 2 is obtained as

EI@6xfj þ ðrwg�mso2Þ@2xfj þ
rwo

2

h
fj ¼ 0. (20)

The continuity of energy flux and mass flux across the interface at the articulated edges for j ¼ 1 yields (Ohkusu and

Namba, 2004)

fðjþ1Þ ¼ fj and @xfðjþ1Þ ¼ @xfj at x ¼ 0. (21)
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Assuming that the plates are articulated through a vertical linear spring and/or a flexural rotational spring with stiffness

k33 and k55, the edge conditions at x ¼ 0 are given by

EI@4xfjðxþÞ ¼ k55f@
3
xfjðxþÞ � @

3
xfðjþ1Þðx�Þg, (22a)

EI@4xfðjþ1Þðx�Þ ¼ k55f@
3
xfjðxþÞ � @

3
xfðjþ1Þðx�Þg, (22b)

EI@5xfjðxþÞ ¼ �k33f@
2
xfjðxþÞ � @

2
xfðjþ1Þðx�Þg, (22c)

EI@5xfðjþ1Þðx�Þ ¼ �k33f@
2
xfjðxþÞ � @

2
xfðjþ1Þðx�Þg. (22d)

The far field radiation condition is the same as in Section 2.1 for j ¼ 1; 2. The velocity potential fjðxÞ; j ¼ 1; 2 is

expanded as given by

fjðxÞ ¼

ðe�ik0x þ R1 e
ik0xÞ þ

PII

n¼I

Rc
n e

i�nknx for x40;

T1 e
�ik0x þ

PII

n¼I

Tc
n e
�i�nknx for xo0;

8>>><
>>>:

(23)

where R1, T1, Rc
n, Tc

n, n ¼ I ; II , are the unknown constants to be determined and kn, n ¼ 0; I ; II satisfies the shallow

water flexural gravity wave dispersion relation

EIk6
n þ ðrwg�mso2Þk2

n ¼
rwo

2

h
; n ¼ 0; I ; II . (24)

It may be noted that the dispersion relation as in Eq. (24) has two real roots �k0 with k040 and four complex roots of

the form kn ¼ �a� ib for n ¼ I ; II ; III ; IV . In the present study, terms involving the negative real root and the two

complex roots having negative real parts are neglected due to the boundedness of the solution. The six unknown

constants R1, T1, Rc
n, Tc

n with n ¼ I ; II are associated with the amplitude of the waves and are determined by using the

conditions as in Eqs. (21) and (22a)–(22d) which yield a linear system of six algebraic equations. Once the unknowns R1

and T1 are obtained, the reflection and transmission coefficients are evaluated from the relations Kr ¼ jR1j and

Kt ¼ jT1j.

2.3. Wave scattering by multiple articulations

In the present subsection, we shall extend the results of a single articulation to N articulations by applying the wide-

spacing approximation method and direct method. The general procedure for the wide-spacing approximation for

multiple articulations is the same for all water depths and depends on the solution procedure for a single articulation.

However, in the direct method, solution procedures are very complex in nature in both the cases of finite and infinite

water depths. Hence, the results by the direct method are discussed only in the case of shallow water approximation.

2.3.1. Wide-spacing approximation for N articulations

The general boundary value problem is same as defined in Section 2.1. Here, the flexural gravity wave experiences

partial reflection and transmission at the articulated joints, located at x ¼ �aj for j ¼ 1; 2; . . . ;N. It is assumed that the

distance between two consecutive articulations is much larger than the wavelength of the incident plane progressive

wave, i.e., jajþ1 � ajj � l for j ¼ 1; 2; . . . ;N � 1, where l is the incident wavelength [as in Dingemans (1997) and

McIver (1986)] to ensure that the evanescent modes do not contribute to the solution. Thus, the local effects produced

during the interaction of the incident wave with one of the articulated joints do not affect the subsequent interactions.

Assuming that the articulated edges are placed widely apart, the asymptotic form of the velocity potential fj for

j ¼ 1; 2; . . . ;N þ 1 far away from the articulations in the respective regions are given by

f1�e
�ik0xf 0ðyÞ þ RN eik0xf 0ðyÞ; �a1oxo1,

fjþ1�Aj e
�ik0xf 0ðyÞ þ Bj e

ik0xf 0ðyÞ; �ajþ1oxo� aj ; j ¼ 1; 2; . . . ;N � 1,

fNþ1�TN e�ik0xf 0ðyÞ; �1oxo� aN . (25)

Equating the left and right going components of the propagating waves at the articulated edges x ¼ �aj for j ¼

1; 2; . . . ;N with the amplitudes of the reflected and transmitted waves in the prescribed region, a system of 2N linear
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equations associated with 2N unknowns RN ;TN , Aj ;Bj , j ¼ 1; 2; . . . ;N � 1 are obtained as given by

RN e�ik0a1 ¼ R1 e
ik0a1 þ B1T1 e

�ik0a1 ; Aj e
�ik0aj ¼ T1Aj�1 e

ik0aj þ BjR1 e
�ik0aj ,

Bj e
�ik0ajþ1 ¼ AjR1 e

ik0ajþ1 þ T1Bjþ1 e
�ik0ajþ1 ; TN eik0aN ¼ AN�1T1 e

ik0aN , (26)

with A0 ¼ 1 and BN ¼ 0. Here, R1 and T1 corresponds to the amplitude of the reflected and transmitted waves for

single articulation. Solving the above system of equations, the reflection and transmission coefficients Kr ¼ jRN j and

Kt ¼ jTN j for N articulations are obtained.

2.3.2. Direct method for N articulations in the case of finite water depth

The velocity potentials fjðx; yÞ in each of the ðN þ 1Þ regions in the case of finite water depth are expressed in terms of

appropriate eigenfunctions as given by

fj ¼

e�ik0ðxþa1Þf 0ðyÞ þ RN eik0ðxþa1Þf 0ðyÞ þ
PII

n¼I

Rc
n e

i�nknðxþa1Þf nðyÞ þ
P1
n¼1

Re
n e
�knðxþa1Þf nðyÞ for x4� a1;

PII

n¼0;I
ðAj

n cos knxþ Bj
n sin knxÞf nðyÞ þ

P1
n¼1

Aj
n

cosh knx

cosh kndaj

þ Bj
n

sinh knx

sinh kndaj

� �
f nðyÞ for x 2 I j ; j ¼ 2; 3; . . . ;N;

TN e�ik0ðxþaN Þf 0ðyÞ þ
PII

n¼I

Tc
n e
�i�nknðxþaN Þf nðyÞ þ

P1
n¼1

Te
n e

knðxþaN Þf nðyÞ for xo� aN ;

8>>>>>>>>><
>>>>>>>>>:

(27)

where I j ¼ ð�aj ;�aj�1Þ for j ¼ 2; 3; . . . ;N with daj ¼ distðI jÞ, �n ¼ 1 for n ¼ I , �n ¼ �1 for n ¼ II and RN , TN , Rc
n, Tc

n

for n ¼ I ; II , Re
n, Te

n for n ¼ 1; 2; . . . ; Aj
n, Bj

n for n ¼ 0; I ; II ; 1; . . . ; are the unknown constants to be determined. The

eigenfunctions f nðyÞ and the associated eigenvalues kn are the same as defined in Section 2.2.1 in the case of finite water

depth. The infinite sums are truncated up to a finite number mðsayÞ in the expansion of the velocity potentials in each

regions as defined in Eq. (27). Using the continuity of pressure and velocity as in Eq. (4), the velocity potentials fj as in

Eq. (27) along with finite number of terms mðsayÞ, the edge conditions as in Eqs. (5a)–(5d) and the orthogonal mode-

coupling relation as in Manam et al. (2006), a system of 2Nðmþ 4Þ linear equations can be obtained for the

determination of the unknown constants associated with the velocity potential and the edge conditions. The unknowns

associated with the edge conditions will be similar to the ones defined in Evans and Porter (2003) and in Bhattacharjee

et al. (2007). Once the unknowns RN and TN are obtained, the reflection and transmission coefficients are derived from

the relations Kr ¼ jRN j and Kt ¼ jTN j. It may be further noted that Kr and Kt satisfy the energy relation K2
r þ K2

t ¼ 1,

which will be used to check the numerical results. However, the details are deferred here in the context of the present

paper.

2.3.3. Direct method for N articulations in the case of infinite water depth

The velocity potentials fjðx; yÞ in each of the ðN þ 1Þ regions in the case of infinite water depth are expressed in terms

of appropriate eigenfunctions as given by

fj ¼

e�ik0ðxþa1Þf 0ðyÞ þ RN eik0ðxþa1Þf 0ðyÞ þ
PII

n¼I

Rc
n e

i�nknðxþa1Þf nðyÞ

þ
2

p

Z 1
0

Lðx; yÞRðxÞ e�xx dx
DðxÞ

for x4� a1;

PII

n¼0;I
ðAj

n cos knxþ Bj
n sin knxÞf nðyÞ þ

2

p

Z 1
0

Lðx; yÞðAjðxÞe�xx þ BjðxÞexxÞ dx
DðxÞ

for x 2 I j ; j ¼ 2; 3; . . . ;N;

TN e�ik0ðxþaN Þf 0ðyÞ þ
PII

n¼I

Tc
n e
�i�nknðxþaN Þf nðyÞ þ

2

p

Z 1
0

Lðx; yÞTðxÞ exx dx
DðxÞ

for xo� aN ;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(28)

where Lðx; yÞ, DðxÞ, kn and f nðyÞ for n ¼ 0; I ; II , j ¼ 1; 2; . . . ;N þ 1 are same as defined in Section 2.2.2 in the case of

infinite water depth with I j , daj and �n are same as defined in the Section 2.3.2. The constants RN , Rc
n, TN , Tc

n for

n ¼ I ; II , Aj
n, Bj

n for n ¼ 0; I ; II , and the functions RðxÞ, TðxÞ, AjðxÞ and BjðxÞ are to be determined. Using the velocity

potentials in each region as defined in Eq. (28) and utilizing the continuity of pressure and velocity as in Eq. (4), the edge

conditions as in Eqs. (5a)–(5d) and the orthogonal mode-coupling relation as in Manam et al. (2006), the unknown
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constants and the unknown functions are to be determined. It may be noted that, in this case, this will lead to a system

of integral equations for the determination of the 8N unknown constants and 2N unknown functions associated with

the velocity potentials as defined in Eq. (28) and the prescribed edge conditions. The details require special attention as

a separate problem and are deferred here in the context of the present paper.

2.3.4. Direct method for N articulations based on shallow water approximation

The physical problem is similar to the one described in Section 2.1 in the case of wave scattering by multiple

articulated floating elastic plates in water of finite depth. The velocity potential fjðxÞ; j ¼ 1; 2; . . . ;N þ 1 are expanded

as given by

fjðxÞ ¼

ðe�ik0x þ RN eik0xÞ þ
PII

n¼I

Rc
n e

i�nknx for x4� a1;

A
j
0 e
�ik0x þ B

j
0 e

ik0x þ
PIV

n¼I

Aj
n e
�iknx for x 2 I j ; j ¼ 2; 3; . . . ;N;

TN e�ik0x þ
PII

n¼I

Tc
n e
�i�nknx for xo� aN ;

8>>>>>>>><
>>>>>>>>:

(29)

where I j ¼ ð�aj ;�aj�1Þ for j ¼ 2; . . . ;N with RN , TN , Rc
n, Tc

n, n ¼ I ; II and A
j
0;B

j
0;A

j
n; n ¼ I ; II ; III ; IV , are the

unknown constants to be determined, and kn satisfies the shallow water flexural gravity wave dispersion relation as in

Eq. (24) having four complex roots kn; n ¼ I ; II ; III ; IV of the form �a� ib and two real roots �k0, which represent the

progressive wave modes. Using the continuity conditions (21) and the articulated edge conditions (22a)–(22d) at

x ¼ �aj , j ¼ 1; 2; . . . ;N, we have a system of 6N linear algebraic equations to solve for 6N unknowns in the case of N

articulations. Once the unknowns RN and TN are obtained, the reflection and transmission coefficients are evaluated

from the relations Kr ¼ jRN j and Kt ¼ jTN j.
3. Numerical results and discussion

The numerical results for the reflection coefficient Kr are obtained using the wide-spacing approximation method for

both finite and infinite water depths to analyse the scattering of flexural gravity waves by floating elastic plates having

multiple articulations. On the other hand, in the case of shallow water approximation, both the direct method and wide-

spacing approximation method are used for analysing the numerical results. The results for a single, double and four

articulations are presented here for different values of the nondimensional plate length daj=d with daj ¼ jajþ1 � ajj for

j ¼ 1; 2; . . . ;N � 1, water depth h=d, nondimensional Young’s modulus E1 ¼ E=rwgd, nondimensional vertical linear

spring stiffness k1
33 ¼ k33=rwgd2, nondimensional flexural rotational spring stiffness k1

55 ¼ k55=rwgd4 and nondimen-

sional wave period t1 ¼ t
ffiffiffiffiffiffiffiffi
g=d

p
, in each of the three cases of finite water depth, infinite water depth and shallow water

approximation. The numerical values of the parameters that are kept fixed during the computations are d ¼ 1:0m,

rw ¼ 1025 kgm�3, rp=rw ¼ 0:9, n ¼ 0:3, g ¼ 9:8m s�2, E1 ¼ 4:9776� 105 with h=d ¼ 100:0 for finite water depth and

h=d ¼ 10:0 for shallow water approximation. The computational results for all the cases are checked with the energy

relation K2
r þ K2

t ¼ 1. Hence, to avoid repetition, in most of the cases only the results for the reflection coefficients Kr

are analysed.

Fig. 3 shows the variation of reflection coefficient Kr versus nondimensional wave period t1 for finite water depth,

infinite water depth and shallow water approximation with k1
33 ¼ 10:0 and k1

55 ¼ 10:0 in the case of single articulation.

In this case it is observed that the reflection coefficient attains a minimum and then increases to a certain value after

decreasing to zero with the increase in the nondimensional wave period t1. The results show same pattern for all the

cases of finite water depth, infinite water depth and shallow water approximation. However, for higher values of t1, the
reflection coefficient for finite and infinite water depth approaches to zero faster than the shallow water approximation.

Fig. 4 shows the variation of reflection coefficient Kr versus nondimensional wave period t1 for finite water depth,

infinite water depth and shallow water approximation with k1
33 ¼ 10:0, k1

55 ¼ 10:0 and da1=d ¼ 100:0 in the case of two

articulations. In this case, it is observed that the wave reflection is less in-between the nondimensional wave period

10ot1o17. Further, the number of zeros is greater in-between the nondimensional wave period 0ot1o17 for infinite

water depth. Comparison shows that for 0ot1o15, the reflection coefficient Kr is higher for finite water depth, whereas

for 15ot1o40 it is higher for infinite water depth. However, the reflection coefficient maintains intermediate values in

the case of shallow water approximation. It may also be noted that the number of zeros in the reflection coefficient for
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the two articulations is greater than the zeros observed in the case of a single articulation. This shows that the

resonating pattern increases with the increase in articulations. This resonating pattern in the reflection coefficients can

be referred to as Bragg resonance which generally occurs in water wave problems involving periodic structures, as

described in Bennetts et al. (2009) and Marchenko and Voliak (1997).

In Fig. 5, the reflection coefficient Kr is plotted versus nondimensional wavenumber k0d for various values of k1
33 and

k1
55 with h=d ¼ 40:0 and da1=d ¼ 40:0 in the case of two articulations for water of finite depth. It is observed that, for
Fig. 3. Reflection coefficient Kr versus nondimensional wave period t1 for finite water depth, infinite water depth and shallow water

approximation with k1
33 ¼ 10:0 and k1

55 ¼ 10:0 in the case of single articulation.

Fig. 4. Reflection coefficient Kr versus nondimensional wave period t1 for finite water depth, infinite water depth and shallow water

approximation with da1=d ¼ 100:0, k1
33 ¼ 10:0 and k1

55 ¼ 10:0 in the case of two articulations.
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Fig. 5. Reflection coefficient Kr versus nondimensional wave number k0d for various values of k1
33 and k1

55 with da1=d ¼ 40:0 and

h=d ¼ 40:0 in the case of two articulations for finite water depth.

Fig. 6. Reflection coefficient Kr versus nondimensional wave period t1 using direct method and wide-spacing approximation method

with h=d ¼ 10:0, k1
33 ¼ 10:0 and k1

55 ¼ 10:0 in the case of two articulations for shallow water approximation.

D. Karmakar et al. / Journal of Fluids and Structures 25 (2009) 1065–1078 1075
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k1
33 ¼ 0 and k1

55 ¼ 0, the result exactly matches with the result obtained by Evans and Porter (2004). Further, as k1
33 and

k1
55 increases, Kr decreases and for sufficiently higher values of k1

33 and k1
55, Kr becomes zero. This suggests that as the

connector stiffness increases, the plates behave as a fully welded and continuous single plate. The resonating pattern in

the reflection coefficient for lower values of the stiffness constants k1
33 and k1

55 is prominent and strong as compared to

higher values of the stiffness constants.

The comparison using the direct method and the wide-spacing approximation method for the reflection coefficient Kr

is plotted versus nondimensional wave period t1 for various values of da1=d with k1
33 ¼ 10:0 and k1

55 ¼ 10:0 in Fig. 6 in

the case of shallow water approximation. It is evident from the figure that the results using the direct method and wide-

spacing approximation method coincide when da1=d � 100:0. This suggests that, in order to study the wave interaction

with multiple articulated floating elastic plates, we need to keep the articulated plate of length da1=d � 100:0 so as to get

satisfactory results. In this case it is found that the number of zeros in the reflection coefficient is larger in-between the

nondimensional wave periods 0ot1o17. This shows that for waves with short wavelength the effect of wave reflection

on the articulated joint is more dominant. It is also observed that for da1=d ¼ 25:0, the direct method and the wide-

spacing approximation method coincide for t1o2:5 (which corresponds to l=do25); for da1=d ¼ 50:0, both the direct

method and wide-spacing approximation method coincide for t1o5:0 (which corresponds to l=do50). However, for

da1=d ¼ 100:0, both methods coincide for all wave periods t1. These observations verify that the assumption for the

wide-spacing approximation does not valid for smaller plate length, whereas for larger plate length the result using both

these methods coincide.

The reflection coefficient Kr is plotted versus nondimensional wave period t1 for finite water depth, infinite water

depth and shallow water approximation with k1
33 ¼ 10:0, k1

55 ¼ 10:0 in Fig. 7 for da1=d ¼ 100:0, da2=d ¼ 200:0 and

da3=d ¼ 100:0 in the case of four articulations. It is observed that the number of zeros in Kr increases significantly as the

number of articulations increases, compared to the case of double articulations. However, as observed earlier, Kr is

smaller for sufficiently higher values of nondimensional wave periods. The reflection coefficient is higher for finite water

depth for nondimensional wave periods 0ot1o15, but for 15ot1o45 the reflection coefficient is higher in the case of

infinite water depth, which is similar to the case of two articulations. Further, the number of zeros in the reflection

coefficient is maximum in the case of water of infinite depth and minimum in the case of shallow water approximation.

In Fig. 8, the reflection coefficient Kr is plotted versus nondimensional wave period t1 for various values of da2=d

with h=d ¼ 100:0, daj=d ¼ 100:0, j ¼ 1; 3, k1
33 ¼ 10:0 and k1

55 ¼ 10:0 in the case of four articulations for finite water

depth. In this case it is observed that, as the plate length da2=d increases, there is an increase in the resonating pattern of

the reflection coefficient for 0ot1o15. This shows that, for waves of short period, the resonating pattern increases with

the increase in the distance between the articulated plates.
Fig. 7. Reflection coefficient Kr versus nondimensional wave period t1 for finite water depth, infinite water depth and shallow water

approximation with daj=d ¼ 100:0, j ¼ 1; 3, da2=d ¼ 200:0, k1
33 ¼ 10:0 and k1

55 ¼ 10:0 in the case of four articulations.
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Fig. 8. Reflection coefficient Kr versus nondimensional wave period t1 for various values of da2=d with h=d ¼ 100:0, daj=d ¼ 100:0,
j ¼ 1; 3, k1

33 ¼ 10:0 and k1
55 ¼ 10:0 in the case of four articulations for finite water depth.
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4. Conclusion

In the present paper, flexural gravity wave scattering by multiple articulated floating elastic plates in the case of water

of finite depth, infinite depth and shallow water approximation is compared by analysing the reflection coefficient. It is

observed that the number of zeros in the reflection coefficient is maximum in the case of infinite water depth and

minimum in case of the shallow water approximation. The resonating pattern in the reflection coefficient increases with

the increase in the number of articulations, which is referred to as Bragg resonance in the case of periodic articulated

floating elastic plates. It is also found that multiple plates having free edges show high resonating pattern in the

reflection coefficient compared to articulated plates with high stiffness constant. The analysis shows that if both the

vertical linear springs and the flexural rotation springs are operating simultaneously, there exist limiting values for both

the stiffness constants, beyond which the multiple articulated plates behave like a single continuous plate.

A comparison between the direct method and the wide-spacing approximation method in the case of shallow water

approximation shows that the results for the reflection coefficients coincides for the nondimensional plate length greater

than or equal to 100 for all wave periods, as discussed in Section 3. In other words, for large plates of length larger than

100 times that of plate thickness, the results by both methods agree well irrespective of the wave period.

The work done can be extended to study the oblique flexural gravity wave scattering due to multiple articulations and

due to multiple abrupt variations in bottom topography. The present work is expected to be of interest to Naval

architects and ocean engineers involved in the design of large floating structures and polar scientists involved in the

analysis of wave-ice interaction problems.
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